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Quantic Lattices 
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The category of quantic lattices is defined. All the multiplicative lattices, such as 
residuated lattices and orthomodular lattices, turn out to be objects of this new 
category. 

1. INTRODUCTION 

When studying lattices it is not unusual to encounter lattices that natu- 
rally possess three binary operations, that is, the usual /x (meet) and v 
(join) plus a "product"  which we shall denote by &. Perhaps the best-known 
example of such a gadget is the lattice of two-sided ideals of  a ring R. 

The study of such lattices is by no means new, since it can be traced 
back to Krull (1924) and Ward and Dilworth (1939). Their aim was to study 
the lattice of ideals of a ring R; to that purpose they defined the concept of  
residuated lattice. Almost 50 years later Mulvey (1984) and Borceux (1984) 
reinitiated the study of  complete residuated lattices under the new name of  
quantale (a complete residuated lattice is a - -no t  necessarily idempotent - -  
quantale), assuming it would be related to the logic of  quantum mechanics 
or quantum logic, for short, though its connection to this logic is still very 
obscure. On the other hand, the study of  quantum logic had been going on 
since 1936, when Birkhoff and von Neumann (1936) wrote their paper "The 
logic of  quantum mechanics." They showed that, given a quantum mechan- 
ical system S, the set of  propositions about S constitutes what is usually 
called an orthomodular  latt ice (Kalmbach, 1983). Finch (1970) emphasized 
the existence of  a natural "product"  operation in such a lattice. Though they 
share common properties, quantales and orthomodular lattices are distinctly 
different, as we shall see. 
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In this paper we construct a category containing both orthomodular 
lattices and quantales as its objects. The name "quantic lattice" is adopted 
to keep up with the tradition that lattices of this type are usually associated 
with quantum logic. We give several examples, paying particular attention 
to the lattice of preradicals on an Abelian category. 

2. THE NEW LATTICE 

Definition 2.1. The category of quantic lattices Q is defined as follows: 
an object of Q is a complete lattice (Q, _<) provided with a binary operation 
&: Q x Q--,Q satisfying: 

(a) -&q:  Q-,Q is a poset morphism for all q in Q. 
(b) -&q  has a right adjoint q-- ,-  for all q in Q. 

A morphism of quantic lattices from Q~ to Q2 is a map f :  Ql~Q2 
such that: 

(i) f ( 1 ) =  1. 
(ii) f (  Vj qj) = Vj f(qj) for any family {qj}j___ Q. 

(iii) f(p&q)>_f(p)&f(q) for all p, q in Q. 

If equality holds in (iii), then the morphism is said to be strict. 
Observe that adjointness just means that p&q<_r iffp <q---,r for all p, 

q, and r in Q. It is also clear, by the adjoint functor theorem, that b can be 
substituted by: 

(b') ( Vj qj)&p = Vj (qj&p) for all p in Q, {qj}j~_ Q. 

In any quantic lattice we have that 0&q = 0 and q--, 1 = 1 for all q in Q. 

Examples  

1. Any orthomodular lattice L With x&y = (x v y • A y, for all x, y 
in L. Here, • denotes orthocomplementation [see Finch (1970) for details]. 

2. Any locale with a&b = a ^ b for all a, b in L. 
3. Any complete residuated lattice in the sense of Ward and Dilworth 

(1939), where & is the lattice product. 
4. Any quantale (Borceux, 1984); morphisms of quantales are mor- 

phisms of quantic lattices. 
5. Let Q be any complete lattice and j: Q-,Q a poser morphism such 

that given qeQ, {Pi}i C. Q we have (Vi  p~) Aj(q) = V i (p~ nj(q)). Then 
p&q=p ^j(q) satisfies the required properties. Note that if Q is a locale, 
then j:  Q--*Q can be any poset morphism. I f j (p  ^j(q))=j(p) ^j(q), then & 
is associative [see Borceux (1984) for details]. 
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6. Let Q be the locale of open sets of a topological space X; put 
j :  Q--,Q; 

a ~---~ - l q  a 

where --q--qa is the interior of the closure of a. By the above, a & b =  
a ^ ( - q ~ b )  for all a ,b  in Q. Note that if a & b = b ,  then the map 
-&b:  [0, a] ~ [0, b] is a morphism of quantic lattices where [0, a] and [0, b] 
have the induced structure ([0, a] = {x~ Q Ix <- a} ). 

7. The lattice of two right (left)-sided ideals of  a ring R with the usual 
meet, join, and product. 

8. The lattice of preradicals on an Abelian category A_. This example 
will be described in detail in Section 3. 

Borrowing the terminology from Niefield and Rosenthal (1987), we say 
that an element q of a quantic lattice Q is: 

(i) Idempotent iff q&q = q. 
(ii) Right-sided iff ql = q. 

(iii) Left-sided iff l&q = q. 
(iv) Two-sided iff (ii) and (iii) hold. 

Note that if q is orthomodular with x & y  = (x  v y•  A y for all x, y in Q, 
then (i) and (iv) are satisfied. Q will be said to be idempotent or right (left, 
two, resp.)-sided if the corresponding property is satisfied for all q in Q. One 
says that Q is associative iff the & operation is associative. Quantales are 
associative, but orthomodular lattices are not necessarily so; as a matter of 
fact, they are associative if they constitute a Boolean algebra, as the next 
proposition shows. 

Proposition 2.2. Let L be an orthomodular lattice; then the operation 
& is associative iff L is a Boolean algebra. 

Proo f  Suppose & is associative; then we claim that 

a--.b • = (a&b) l 

Indeed 

( a ~ b i  )&(a&b)  = ( ( a ~ b •  )&a)&b < b• = 0 

Given x in L such that x & ( a & b ) =  0, then 

x&(a&b)  = 0 ~ (x&a)&b = 0 

so that x < a ~ b  • 
Therefore a ~ b  •  (a&b)• from Romfin and Rumbos (1988) we have 

that a ~ b  ~ = (b&a) l ,  yielding b&a = a&b for all a, b in L. So that again from 
Romfin and Rumbos (1988), L is a Boolean algebra. [] 
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The implication q ~ -  has been studied for orthomodular lattices (e.g., 
Finch, 1970; Hardegree, 1981; Rom~m and Rumbos, 1988); it is worth 
mentioning that the concepts of "importation-exportation" and "residua- 
tions" used in Hardegree (1981) are just adjoint functor relations. 

Lemma 2.3. If  Q is a left-sided quantic lattice, then p<q iffp--*q = 1 
for allp, q in Q. �9 

Proof. p= l&p<q iff 1 <p--*q iff 1 =p~q.  �9 

As suggested in Finch (1970) and Rom~m and Rumbos (1988), the 
operation "&" can be interpreted as a noncommutative logical conjunction. 
If  Q is orthomodular or a quantale, "&" generalizes ^ in the following 
sense: p ^ q <p&q for all p, q in Q. For a quantic lattice we have the next 
result. 

Proposition 2.4. If Q is a left-sided quantic lattice, p ^ q <p&q i f f p ~ q  = 
p~(p&q) for all p, q in Q. 

Proof. ( 0 ) .  p--.q>p--.(p&q) always hold. On the other hand, 
p--*q<p~(p&q) iff (p-*q)&p<p&q, but (p--*q)&p<l&p<p and 
p--.q < p ~ q  implies (p--*q)&p < q, so that (p~q)&p < p ^ q < p&q and hence, 
p--.q =p-.(p&q). 

( ~ ) .  By Lemma 2.3, l = p ^ q ~ p ,  so t h a t p A q ~ p < p < q - * ( p ^ q ) & p  
implies p A q--*(p A q)&p = 1 ; hence p A q < (p ^ q)&p <p&q, which is the 
desired result. �9 

In the case of quantales it turns out that p & -  is a poset morphism for 
all p in Q. If  we have a two-sided quantic lattice Q satisfying p ^ q <p&q 
(for example, Q orthomodular), then this property implies that Q is a locale, 
as the next proposition shows; if Q is orthomodular, then this, of course, 
implies it is actually a Boolean algebra. 

Proposition 2.5. Let Q be any two-sided quantic lattice satisfying 
p ^ q<p&q for all p, q in Q; then, i f p & -  is a poset morphism for all p in 
Q, Q is a locale. 

Proof. Given p, q in Q, we have p&q< l & q = q  and p&q<p&l =p;  
hence p&q <p A q, yielding p ^ q =p&q. Then Q is a locale since - ^ q will 
distribute arbitrary joins for all q in Q. �9 

Let Q be a v-lattice; then End(Q) (the v-lattice endomorphisms) is a 
quantic lattice if we define < ,  A, V pointwise in End(Q) and f&g=g o f  
for all f ,  g in End(Q). Now take Q a quantic lattice and consider the map 
f :  O~End(O)  ; 

f :  b ~---~ 
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is given by fb(a)=a&b, Va~Q. Clearly J~ belongs to End(Q), since -&b  
distributes arbitrary joins for all b in Q. If  a & -  has a right adjoint for all a 
in Q, then f (  A i bi) = fv  ~b," for { bt}~ ~ Q, so that f is a v -lattice morphism; 
furthermore, if Q is associative, then fb~c(a)=a&(b&c)=(a&b)&c = 
fc ~ = (fb&fc)(a), SO that f is actually a strict morphism of quantic 
lattices. Let E(Q) denote the image o f f  in End(Q). The following is an 
interesting result. 

Theorem 2.6. Let Q be a quantale in the sense of Borceux (1984); then, 
the correspondence 77 : Q~E(Q) yields a functor from quantales to locales. 

Proof For such a quantale Q, the relation a&b&c = a&c&b holds for 
all a, b, c in Q (Borceux, 1984) ; hence, fos, c =fb ~ =fc ofa =fb Aft, SO that 
indeed E(Q) is a locale. 

By the above observations f is a quantale morphism. Moreover, given 
any ~ :  Ql ~ Q2 a quantale map, then E(QO ~E(Q2), 

fb ~'-'~ fr 

yields a map of locales, so q is indeed a functor. �9 

Observe that E(Q) is a localic quotient of Q in the sense of Niefield and 
Rosenthal (1987). 

When Q is an orthomodular lattice, E(Q) is also orthomodular by 
letting fa AJ~ = (fa~ o fb)' ~ Jb and (f~)• = f ~  for all a, b in Q. Furthermore, 
7/ is an isomorphism of orthomodular lattices. It turns out that E(Q) is 
exactly the lattice of closed projections of a certain Baer ,-semigroup; this 
result was proved by Foulis (1960). 

The construction of quantie nuclei and quantic conuclei in quantic lattices 
can be carried out as in Niefield and Rosenthal (1987). It turns out that 
given a quantic lattice Q and j :  Q--*Q a closure operator, t hen j  is a quantic 
nucleus iffj(a&b)>j(a)&j(b) and j(a&b)=j(j(a)&b). The second condition 
is implied by the first one whenever a & -  is a poset morphism for all a in Q. 
As in Niefield and Rosenthal (1987), the image o f j  is a quantic quotient 
lattice of Q. Similarly, if j :  Q ~ Q is a coclosure operator, thenj  is a conucleus 
iffj(a&b) =j(a)&j(b) ; in this case the image o f j  is a quantic sublattice of Q. 
Consider the following example: 

Let Q be an orthomodular lattice; Z(Q) will denote the center of Q, 
that is, Z(Q) = {a ~ Q [ a&b = b&a Vb e Q}. 

From Finch (1970) we know that Z(Q) = { a ~ Q [ a&b = a A b Vb s Q } and 
also is equal to {aeQlb&a=aAbVbeQ}. Now, Z(Q) is trivially closed 
under arbitrary meets and furthermore we have: 
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L e m m a  2. 7. Z ( Q )  is closed under arbitrary joins. 

Proof. Let {ai}i ~_ Z (Q) ,  b ~ Q; then ( V i ai)/x b = ( V i ai)&b = 
V ~ (a,&b) V ~ (ai ^ b) < ( V z az) ^ b; hence, ( V ,- ai) A b for all b in Q, yielding 
V i a i e Z ( Q ) .  �9 

Let's define a coclosure operator c: Q ~  Q as follows. Given a e Q, c(a) = 
v { x ~ Z ( Q ) I x < a } ;  this union is nonempty since O s Z ( Q )  and 0 < a  for all 
a i n  Q. 

Proposition 2.8. c is a conucleus in Q; moreover, the image of c is a 
Boolean subalgebra of Q equal to Z(Q) .  

Proof. We have to prove that c(a&b) > c(a)&c(b) for all a, b in Q. 

c(a)&c(b) = c(a) /x c(b) e Z ( Q )  

and e(a) ^ c(b) < a A b, yielding c(a) ^ c(b) < c(a A b), but also a ix b <_ a&b 
implies e(a ^ b) < e(a&b), so that finally e(a&b) > c(a) ^ c(b) = e(a)&e(b).  

The image of e is clearly Z ( Q )  and it is a Boolean algebra since 
c(a) ^ c(b) = e(a)&e(b),  so that the meet distributes over arbitrary joins. �9 

3. THE QUANTIC LATTICE OF PRERADICALS 

Let A_ be any Abelian category and I : A ~ A  the identity functor. As 
usual, a preradical on A_ is a subfunctor of I : A ~ A ;  the preradicals of A_ 
will be denoted by Prerad -A_. They can be turned into a complete lattice 
as follows: 

Given o-, v in Prerad A_I_ and {cr/}t___Prerad A_, then o-< v iff o-(A) < r(A) 
for all A in A_. We have 

( A i ~ i ) ( A )  = (-~i o ' i ( A )  

and 
( Ai r =Y~ r 

i 

for all A in A_. 
There are at least two ways of turning Prerad A_ into a quantic lattice: 

we can define o '&r=o-o v (composition of preradicals) or o-&v=(r :o ' )  
where (r:  or) is defined as in Stenstr6m (1985) by 

(r: (r)(A) 
- c r ( A / v ( A ) )  

r(A) 

for all A in A_. It can be easily verified that in both cases, - & r  is a poset 
morphism that distributes arbitrary joins and as a matter  o f  fact ,  also over 
arbitrary meets!, so that the opposite category (Prerad A_) ~ is also a quantic 
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lattice. It is easy to see that with either product, Prerad A is an associative 
two-sided quantic lattice. If  cr ePrerad A_ is such that o- o o" = or, then cr is an 
idempotent preradical and if (or: or) = or, then it is a radical. 

From now on let A = R-mod, the category of left _R-modules for some 
ring R. For simplicity Prerad R-mod will be denoted by Prerad _R. There are 
several closure and coclosure operators in Prerad _R; here we only take a 
look at two of them: the left exact or hereditary and the cohereditary co- 
closure. We made this choice because left exact preradicals have recently 
made a comeback (Golan, 1987). 

Given o-EPrerad _R, a left exact preradical h(o-) is defind by h(cr)(M) = 
M A c r ( E ( M ) )  for all MeR-mod;  here E ( M )  denotes the injective hull 
of M. In Bican et al. (1976) the following facts are proved: 

(i) o-___ h(o-). 
(ii) h(cr) = {rl o- _< r and r is left exact}. 

(iii) h(o-) is left exact; i.e., it is hereditary. 
(iv) h(o-) o r = h ( o  -) ^ r VvePrerad _R. 

We have, then, that h is a closure operator on Prerad _R or a coclosure 
operator on (Prerad _R) ~ The image ofh  consists of all the left exact prerad- 
icals. Golan (1987) calls this set R-ill since they correspond exactly to the 
topologizing filters of right ideals. R-ill is then closed under arbitrary meets 
and if U is the join in R-ill, o - t . j r = h ( v  r), where r, o-ER-fil and v is the 
join in Prerad _R. 

The product h(o-)oh(r)  is just h(cr) Ah(r) in r-ill and (h(o-):h(r)) 
coincides with the product of filters defined by Golan (1987). It is not hard 
to see that (h(o-):h(r)) is left exact, so that (h(o-):h(r))>_h(cr: ~); it turns 
out that h is a conucleus in (Prerad R) ~ and hence, (R-fil) ~ is a quantic 
sublattice of (PreradR) ~ with the "(~r:T) product." In particular, if 
{ri}i_<R-fil and o-eR-fil, we have 

(o-: Air / )  = A, (o-:rl) 

The "residuation" defined by Golan (1987) is, as expected, just the left 
adjoint to the functor ( v : - ) ,  veR-fil. 

Given any ideal I of R, rl(I) is the unique preradical satisfying 

x~ fl(I)( M )  ~:~ I<_ {reRlxr = 0} 

In Golan (1987) the following are proved: 

(i) fl(H) = (7(1) : rl(J)) for all ideals/ ,  J in R. 
(ii) rl(~t J , )=  V i rl(Ji) for any family {Ji}i of ideals of R. 
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Within the context of  quantic lattices we have that 

q: IdlR-- .(Prerad R) ~ 

is a strict morphism of  quantic lattices, where Idl R is the set of two-sided 
ideals of R. Clearly 77 is injective and the image consists exactly of all the 
Jansian filters (Golan, 1987). 

Let us now consider the dual case. As in Bican et al. (1976), a coclosure 
operation in Prerad _R is defined by ch: Prerad R ~ P r e r a d  _R, where 

r ~ ch(r)  

ch(z ) (M)  = r ( R ) M  for all M~R-mod.  The following are proved in 
Bican et al. (1976): 

(i) ch('c) _< r. 
(ii) ch(r )  = Y,{ o"1o- < r and ~- preserves epis}. 

(iii) ch(r)  preserves epis; i.e., it is cohereditary. 
(iv) ( a :  ch(z)) = o- v ch(r)  for all o-eRad _R. 

It is straightforward to check that the composition (ch(z)) o (ch(o-)) is 
cohereditary, so that (ch(r))  o (ch(o-))<ch(z  o o-) and ch is a conucleus in 
the quantic lattice Prerad _R with & as composition of preradicals. The image 
of ch, i.e., the set of cohereditary radicals, is a quantic sublattice of Prerad R. 

Consider now the map p: Idl R ~ P r e r a d  _R, 

I~--~ r1 

where rr(M) = I M  VMeR-mod. Trivially p is a map of quantic lattices; 
moreover, it is injective and its image is exactly 

Coh R = {or ePrerad _R I o- is cohereditary} 

so that Idl R and Coh R are isomorphic quantic lattices. 
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